Sunday, February 5, 2023
BigQuery Cloud SQL GCP Juara GCP

Introduction to SQL for BigQuery and Cloud SQL

SQL

“Introduction to SQL for BigQuery and Cloud SQL”

Pengantar

SQL (Structured Query Language) adalah bahasa standar untuk operasi data yang memungkinkan Anda mengajukan pertanyaan dan mendapatkan wawasan dari kumpulan data terstruktur. Ini umumnya digunakan dalam manajemen basis data dan memungkinkan Anda melakukan tugas seperti penulisan catatan transaksi ke dalam basis data relasional dan analisis data berskala petabyte.

Praktikum

Task 1. The basics of SQL

Databases and tables

SELECT and FROM

Contoh command :

SELECT USER FROM example_table
SELECT USER, SHIPPED FROM example_table

WHERE

SELECT USER FROM example_table WHERE SHIPPED='YES'

Task 2. Exploring the BigQuery console

  • Klik Navigation menu > BigQuery
  • Klik Done

Uploading queryable data

  • Click on + ADD DATA
  • Choose Star a project by name > Star a project
  • Enter project name as bigquery-public-data
  • Click the STAR
  • In the search bar, enter London Bicycles Hires and click VIEW DATASET
  • You now have access to the following data
Google Cloud Project → bigquery-public-data
Dataset → london_bicycles
  • Click on the london bicycles dataset to reveal the associated tables
Table → cycle_hire
Table → cycle_stations

In this lab we will use the data from cycle_hire. Open the cycle_hire table, then click the Preview tab. Your page should resemble the following:

Running SELECT, FROM, and WHERE in BigQuery

  • Copy and paste the following command into the query EDITOR:
SELECT end_station_name FROM `bigquery-public-data.london_bicycles.cycle_hire`;
  • Klik Run
SELECT * FROM `bigquery-public-data.london_bicycles.cycle_hire` WHERE duration>=1200;

Task 3. More SQL Keywords: GROUP BY, COUNT, AS, and ORDER BY

GROUP BY

SELECT start_station_name FROM `bigquery-public-data.london_bicycles.cycle_hire` GROUP BY start_station_name;
  • klik Run

COUNT

SELECT start_station_name, COUNT(*) FROM `bigquery-public-data.london_bicycles.cycle_hire` GROUP BY start_station_name;

AS

SELECT start_station_name, COUNT(*) AS num_starts FROM `bigquery-public-data.london_bicycles.cycle_hire` GROUP BY start_station_name;

ORDER BY

SELECT start_station_name, COUNT(*) AS num FROM `bigquery-public-data.london_bicycles.cycle_hire` GROUP BY start_station_name ORDER BY start_station_name;
SELECT start_station_name, COUNT(*) AS num FROM `bigquery-public-data.london_bicycles.cycle_hire` GROUP BY start_station_name ORDER BY num;
SELECT start_station_name, COUNT(*) AS num FROM `bigquery-public-data.london_bicycles.cycle_hire` GROUP BY start_station_name ORDER BY num DESC;

Task 4. Working with Cloud SQL

Exporting queries as CSV files

  • Run
SELECT start_station_name, COUNT(*) AS num FROM `bigquery-public-data.london_bicycles.cycle_hire` GROUP BY start_station_name ORDER BY num DESC;
  • In the Query Results section click SAVE RESULTS > CSV(local file). This initiates a download, which saves this query as a CSV file. Note the location and the name of this downloaded file—you will need it soon.

Upload CSV files to Cloud Storage

  • Open Navigation menu > Cloud Storage > Buckets, and then click CREATE BUCKET
  • Create bucket
  • Click UPLOAD FILES and select the CSV that contains start_station_name data.
  • Then click Open. Repeat this for the end_station_name data.
  • Rename your start_station_name file by clicking on the three dots next to on the far side of the file and click rename. Rename the file to start_station_data.csv.
  • Rename your end_station_name file by clicking on the three dots next to on the far side of the file and click rename. Rename the file to end_station_data.csv.

Task 5. Create a Cloud SQL instance

  • select Navigation menu > SQL
  • Click CREATE INSTANCE > Choose MySQL .
  • Enter instance id as qwiklabs-demo
  • Enter a secure password in the Password field (remember it!)
  • Select the database version as MySQL 5.7.
  • Set the Multi zones (Highly available) field as
  • Click CREATE INSTANCE.
  • Click on the Cloud SQL instance. The SQL Overview page opens.

Task 6. New queries in Cloud SQL

CREATE keyword (databases and tables)

https://shell.cloud.google.com/?show=terminal
gcloud config set project [PROJECT_ID]

Create a database in Cloud Shell

gcloud auth login --no-launch-browser
gcloud config set project [PROJECT_ID]
gcloud sql connect qwiklabs-demo --user=root --quiet
CREATE DATABASE bike;
USE bike;
CREATE TABLE london1 (start_station_name VARCHAR(255), num INT);

USE bike;
CREATE TABLE london2 (end_station_name VARCHAR(255), num INT);

SELECT * FROM london1;
SELECT * FROM london2;

Upload CSV files to tables

  • In your Cloud SQL instance page, click IMPORT.
  • In the Cloud Storage file field, click Browse, and then click the arrow opposite your bucket name, and then click start_station_data.csv. Click Select.
  • Select CSV as File format.
  • Select the bike database and type in “london1” as your table.
  • Click Import

Penutup

Sahabat Blog Learning & Doing demikianlah penjelasan mengenai Introduction to SQL for BigQuery and Cloud SQL. Semoga Bermanfaat . Sampai ketemu lagi di postingan berikut nya.

(Visited 12 times, 1 visits today)
Baca Juga :  Serverless Cloud Run Development: Challenge Lab

Similar Posts